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William Vickrey is the “father of congestion pricing” and a Nobel Laureate in

economics. While watching the ebb and flow of traffic from his Manhattan

office, he developed a hypothesis that the dynamics of rush-hour traffic have the same

properties as water flowing into and out of a hypothetical bathtub. 

The Vickrey bathtub corresponds to Manhattan, water flowing into the bathtub

corresponds to vehicles entering the traffic stream, and water draining out of the tub

corresponds to vehicles exiting the stream. The height of water in the tub represents

traffic density. The rate at which water drains increases with the height of the water

until it reaches a critical height. Above that height, the outflow decreases as shown in

Figure 1. Thus, the rate at which the bathtub drains reaches a maximum at the critical

height. This critical height corresponds to the density of downtown traffic at which

traffic jams start to become common. Above this level, traffic jams become more severe

and the exit stream slows. �

F IGURE 1  

The Vickrey Bathtub
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A similar phenomenon occurs in electricity distribution networks. In the context of

electricity distribution, overloading the system results in brownouts and eventually

blackouts. In the context of downtown traffic congestion, overloading the system results

in traffic jams and eventually gridlock.

Vickrey based his hypothesis on traffic flow theory and careful observation, since

there were no data on the properties of traffic flow and density for an entire downtown

area a quarter century ago. In this article, I review recent empirical work that supports

Vickrey’s hypothesis, I report on my own work developing a formal model of the Vickrey

bathtub, and I discuss how the hypothesis provides insight into managing downtown traffic

congestion through pricing.

Recent work by Carlos Daganzo and his students at UC Berkeley shows a predictable

relationship between traffic flow and traffic density at the scale of a downtown area. They

refer to this relationship as the area’s macroscopic fundamental diagram (MFD). Figure 2

shows the MFDs for three cities around the world. Each dot corresponds to an

observation. Observations were made at regular intervals throughout the business day

and over days of the workweek. The observations document two important empirical

regularities. First, under heavily congested conditions, traffic flow falls markedly as traffic

density increases (which corresponds to the bathtub draining more slowly at high water

levels). Second, the ratio of the outflow from the traffic stream to traffic flow is

approximately constant (which corresponds to the bathtub draining at a rate that is tightly

related to the height of water in the bathtub). Together, these two empirical regularities

show that the Vickrey bathtub describes well how congested traffic behaves at the level

of a downtown area. Other researchers have since confirmed these results for other cities.
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F IGURE 2  

Macroscopic
Fundamental Diagram
of Downtown Traffic
Congestion 

 

NE
TW

OR
K 
FL

OW
 (
VE

HI
CL

ES
/S

EC
ON

D/
LA

NE
)

NETWORK DENSITY (VEHICLES/METER/LANE)

0.150

0.125

0.100

0.075

0.050

0.025

0
0.02 0.04 0.06 0.08 0.10

Source: Gonzales, Chavis, Li, and Daganzo, 2011

Nairobi

San Francisco

Yokohama



29 A  C  C  E  S  S
N U M B E R  4 6 ,  S P R I N G  2 0 1 5

PHYSICS OF TRAFFIC CONGESTION

Macroscopic models of traffic flow examine the relationship between the flow, density,

and speed of traffic. In contrast, microscopic models focus on the behavior of individual

vehicles.

In 1935 Bruce Greenshields reported on observations he made of the speed and

traffic density of cars along a section of highway. He found that speed falls linearly with

increasing density, from a maximum speed at zero density to complete gridlock at jam

density. This finding is now referred to as Greenshields’ Relation. 

Combining Greenshields’ Relation with the fact that flow is the product of density 

and speed generates the MFD displayed in Figure 3. The maximum flow—known as

capacity flow or simply capacity—occurs at an intermediate density, known as capacity

density. Travel on the upward-sloping portion of the MFD, labeled “congested flow,”

corresponds to normal congestion, where flow increases with density. Flow decreases

with increasing density on the downward-sloping portion of the macroscopic diagram,

labeled “hypercongested flow.” 

The installation of the first loop detectors on freeways in the early 1980s generated an

abundance of data, which spawned considerably more sophisticated models of freeway

traffic flow. However, until the very recent work reported above, no comparable data had

been collected at the scale of a downtown area, and little comparable modeling had been

done for downtown traffic. To simplify my model, I assume that Greenshields’ Relation

holds for downtown traffic. I also assume that the rate at which traffic exits the traffic

stream is proportional to traffic flow. Together, these assumptions result in a model whose

physics is analogous to that of the Vickrey bathtub. �
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ECONOMICS OF RUSH-HOUR TRAFFIC CONGESTION

Consider a situation in which a fixed number of commuters travel from home to work

over the morning rush hour. Each commuter has the same work start time and travels

the same distance over city streets from home to work. Since it is physically impossible for

all commuters to arrive at work exactly on time, some arrive early and others arrive late,

experiencing costly schedule delay. Commuters arriving exactly on time experience no

schedule delay but a large travel time cost since they travel when traffic is most congested.

In contrast, commuters departing at the beginning of the rush hour experience little

congestion and therefore shorter travel times, but they arrive at work considerably before

their work start time, experiencing high schedule delay cost. The private cost incurred 

by a particular commuter equals her travel time cost plus her schedule delay cost. 

A commuter’s trip price equals her private cost plus the congestion toll she pays, if a 

toll is in place. A commuter imposes an external cost on other travelers by adding to

congestion and slowing other commuters down. The social cost of a trip is the increase 

in total trip costs the trip causes, and equals the private cost incurred by the commuter 

plus the external cost the trip imposes on others.

I compare the model’s optimum morning rush-hour traffic dynamics, which can be

achieved through ideal congestion pricing, with its no-toll equilibrium rush-hour traffic

dynamics. Equilibrium is achieved when no commuter can reduce her trip price by altering

her departure time. The optimum time pattern of departures minimizes total trip costs.

Since transferring a commuter from a departure time with a higher social cost (private

cost plus external cost) to a departure time with a lower social cost would reduce total trip

costs, the optimum is achieved by equalizing the social cost of trips at different departure

times. In contrast, the no-toll equilibrium time pattern of departure equalizes the private

cost of trips at different departure times. Since the external cost of a trip at the peak of the

rush hour is higher than one in the shoulders of the rush hour, the no-toll equilibrium

pattern of departures entails excessive travel at the peak of the rush hour, causing the

street system to become overloaded. 

TABLE  1  

Terminology Travel Time Cost The cost of the time it takes a commuter to get to work
Schedule Delay Cost The cost to a commuter of arriving at work early or late
External Cost The cost imposed by the commuter on other travelers by adding to 

congestion and slowing them down

Private Cost Travel Time Cost + Schedule Delay Cost
Trip Price Private Cost + Congestion Toll (where applicable)
Social Cost Private Cost + External Cost

Total Travel Time Cost Sum of the travel time cost of all commuters
Total Schedule Delay Cost Sum of the schedule delay cost of all commuters
Total Trip Cost Total Travel Time Cost + Total Schedule Delay Cost

Equilibrium When no commuter can reduce her trip price by altering her departure time
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The optimum time pattern of departures minimizes the sum of total schedule delay

cost and total travel time cost. Consider first how total schedule delay cost alone would be

minimized. The fixed number of commuters traveling over the rush hour is analogous in

the Vickrey bathtub to a fixed volume of water that passes through the tub. Initially the tap

would be turned to maximum so that the water level rises as fast as possible, until it rises

to the level at which outflow is maximized. The inflow would then be turned down so that

it equals the outflow, which would keep the bathtub draining at the maximum rate. Finally,

when the fixed volume of water has flowed into the tub, the tap would be turned off, leaving

the remaining water to drain out. Total travel time cost, in contrast, would be minimized

by having water enter the tub at a trickle, which would ensure that commuters experience

virtually no traffic congestion. In the optimum scenario, the water level would never rise

above the critical level where outflow is maximized. 

In the no-toll equilibrium, in contrast, traffic density may exceed the flow-maximizing

density over much of the morning rush hour. Demand relative to capacity is defined as the

ratio of the actual flow to capacity flow. In the bathtub analogy, it is the time it would take

for the fixed volume of water to drain at maximum outflow. The higher the demand is

relative to capacity, the longer the rush hour. Suppose that demand is high relative to

capacity, so that the rush hour lasts for a long time, causing the first commuter to

experience a high schedule delay cost and thus a high trip price. In the no-toll equilibrium,

the commuter who arrives at work on time experiences the same high trip price, only 

in the form of high travel time. If trip distance is short, this high travel time is possible �
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only if this commuter’s average speed is low, which requires that traffic density exceed

capacity density over at least a portion of the rush hour.

Table 2 illustrates the no-toll equilibrium in a downtown area where demand is high

relative to capacity. All commuters have a work start time of 9 am and commute 10 miles

from home to work on the downtown road network. Free-flow travel speed is 20 mph.

Consider two commuters. The first is the earliest to depart from home and therefore the

earliest to arrive at work, while the second commuter departs later and arrives exactly on

time. The first commuter’s schedule delay cost is $10 for each hour she arrives early. Both

commuters have a common travel time cost of $20 per hour. Demand is so high relative

to capacity that the first commuter departs at 5:30 am. Traveling at close to the free-flow

speed of 20 mph on the 10-mile journey to work takes slightly more than half an hour, so

that she arrives at work almost three hours early. Her travel time cost is slightly above

$10, and her schedule delay cost is slightly below $30, for a trip price of about $40. In the

no-toll equilibrium, the commuter who arrives exactly on time must experience the same

trip price of $40. Since this commuter experiences no schedule delay cost, the entire trip

price must be travel time cost. Since travel time cost is $20 per hour, the journey to work

takes two hours, which implies an average speed of 5 mph, only one-quarter of free-flow

speed. With the assumed congestion technology, depicted in Figure 3, this low speed

corresponds to heavily jammed traffic, with traffic flow substantially below capacity. 

In the optimum scenario the departure rate from home is such that traffic never

becomes jammed, and commuters experience only normal congestion. These optimal

conditions can be achieved by charging a time-varying congestion toll set so that each

commuter pays for the external cost her trip imposes on others. Each commuter’s trip

price then equals the social cost of her trip. Since commuters respond to the toll by altering

their departure times so that the equal trip-price condition (now including the toll)

continues to be satisfied, the social cost of each trip is the same, which is the defining

feature of the optimum scenario. In the example, total trip costs are so much lower when

this toll is applied that, even though commuters must pay the toll, the trip price is lower

than in the no-toll equilibrium. Thus, optimal tolling would still benefit commuters even if

the toll revenue were completely squandered! The additional benefits from spending or

redistributing toll revenue are icing on the cake. 

5:30 am 20 mph 6:00 am $10 $30 $40
1⁄2 hr x $20/hr 3 hrs x $10/hr

7:00 am 5 mph 9:00 am $40 $0 $40
2 hrs x $20/hr 

DEPARTURE 
TIME

TRAVEL 
SPEED

ARRIVAL 
TIME

TRAVEL TIME 
COST

SCHEDULE 
DELAY COST

TRIP 
PRICE

Early
Commuter

On-Time
Commuter

(Free-flow travel speed is 20 mph and trip distance is 10 miles. The travel time cost is $20/hr and the time early cost is $10/hr. The common work start time is 9:00 am.) 

TABLE  2  

Illustration of No-Toll
Equilibrium

In very

congested

cities optimal

tolling would

still benefit

commuters
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revenue were

completely
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Building on the insights of Vickrey, I have described a model of downtown traffic

congestion over the morning rush hour. This model has the property that traffic flow falls

as traffic density increases beyond a critical level where traffic jams start to develop. In

most large metropolitan areas, traffic jamming is severe. By reducing the incidence and

severity of traffic jams, congestion tolling can improve the flow of downtown traffic during

rush hours and decrease the costs of traffic congestion to such an extent that commuters

are made better off even if they receive no benefits from the toll revenues collected. The

strong support of the model’s properties provided by recent empirical studies of downtown

traffic congestion strengthens the case for congestion tolling in practice. �

This article is adapted from “A Bathtub Model of Downtown Traffic Congestion,” originally
published in the Journal of Urban Economics.
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